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The mixed boundary value problem (the problem of the die) in the static 

theory of elasticity is well studied [ l-31. In transient dynamics of an 

elastic medium for a half-space, the problems were studied effectively 

for which, for certain initial conditions, there are given on the bound- 

ary either the displacements of the tensions [4-61 or certain components 

of displacement and certain components of tension c41. Paper [8] con- 

sidered Lamb’s problem for mixed boundary conditions, permitting to in- 

vestigate the propagation of longitudinal and transverse waves. 

In the present article we consider the plane case of the mixed bound- 

ary value problem for the dynamic equations of the theory of elasticity. 

1. We consider the equation 

(1.1) 

Here u = (u, V) is the displacement vector; X, p are Lamd-‘s coeffi- 
cients, p is the density and the elastic body occupies the half-plane 
y > 0. 'Ihe initial conditions, for the sake of simplicity, are taken to 

be zero, 

u=o, a”=() 
at 

at t=O 

and the boundary conditions are: 
(1.2) 

a - 0, XY - ally = 0 where I z I > 1, v=f(z,t)wherelzl<l for y = 0 

here u , u 
functi% whrzh 

are components of the stress tensor and f(n, t) is a given 
is assumed to be bounded and possesses a finite number of 

lines of discontinuity. 

The physical meaning of the boundary conditions is as follows. 
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A rigid die is impressed without friction into the elastic half-plane 

along the portion 1 xl < I; it produces on this portion the displacement 

v = f(~, t), while the remaining part of the boundary 1x1 > 1 is free of 
tension. 

Paper [9] contains the solution of an analogous problem for one wave 

equation. It is a pity that the author was not acquainted with the work 

of Galin [13], where a problem is solved which may be reduced to the one 

of [9], and therefore [9] does not contain the proper reference. This 

drawback is corrected in the present work. 

The aim of the present paper is the construction for y = 0 of the 

values 0 for 1x1 < I, that is of the stresses underneath the die, and 

in addit% of v for 1 XI > I, that is of the vertical displacement on the 

free boundary. The construction of these functions on the boundary repre- 

sents, above all, an immediate interest and, in addition, reduces our 

problem to one of the solved boundary value problems of an elastic half- 

plane [4-71. 

As is known [4], any solution of equations (1.1) may be represented in 
the plane case in the form 

(l-3) 

where the functions St, and ',I/ satisfy the equation 

Without loss of generality we may put 1 = 1, b = 1. We introduce the 
notation b2/a2= y2 < 1. Then (I 

XY’ 
uyy may be expressed by $ and 1,'~ 

1 
-G 

P 
*y = 2 a?? ; a2 - a2 

axdy dxa aya (1.5) 
1 -G,4~+(~-2)~+2 agy 
P 

2. We shall tackle our problem by applying to the functions a one-sided 

Laplace transform with respect to t and a two-sided Laplace transform with 

respect to n. 

We introduce the notation 

G (s, p) = ip e-+x ch 7 e-p~Gvy (z, t) dt 
-CO 0 

(2.1) 
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00 

V (s, p) = _L e-+ dx j e--P% (2, t) dt 
0 

00 

(24 

a, (‘9, p, y) = 1 e--=&z 5 e-P’rp (x, y, t) dt 
---cQ 0 (2.3) 

?I!” (s, p, y) = 7 e-sx ckc 7 e-q (x, y, t) dt 

-CO 0 

Rep>0 (2.4) 

lh question of convergence of the integrals dete~ining these func- 

tions shall be left open for the time being. Ve shall deduce the relation 

connecting o(s, p) and V(s, p) with the condition that u 
*Y 

= 0 for y = 0. 

From (2.3) and (1.4) we obtain 

The solution of these equations will be taken in the form 

CD = Aexp(- yv_r2jP- S2), Y=Bexp(-yt/p2-52) (2.5) 

In the plane of the complex variable s cuts are established along the 

straight line passing through the points s = p and s = (7 for the radical 

ti Y2P2 - s2 from the point yp to the right to infinity and from the point 

- yp to the left to infinity, and for the positive values y2 - s2/p2 the 

arithmetic mean of the radical is taken. 'Ihe branch of the radical 

\, p2 - s2 is chosen analogously. 

Using the second relation from (1.31, formulas (1.51, (2.1) to (2.5) 

and putting u 
*Y 

= 0 for y = 0, we obtain 

where 

I r/y- ‘12 

i?r, C(4) 
G (s, p) -!- v (s, p) = 0 (2.6) 

I)” -f- 4qqql -- q*)(r2 - q') 
s *~ 

G (d = GV - b -b-t (2.7) 

That is C(q) is the left-hand side of Rayleigh's equation. 

Formula (2.6) represents, as may be shown, the result of a double 

transformation of the relation, which connects the boundary values u 

and v (on the boundary y = 0) for the condition u 
xy = 0 on the boundisy. 

(2.8) 
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Here the kernel W(X, t) is the vertical displacement of the points on 

the boundary y = 0, corresponding to the vanishing initial conditions 

and to the boundary conditions (I =oanai7 = 6(n)S(t). In its 

characteristics formula (2.8) is'&ralogous tZYthe relation between the 

boundary values of a harmonic function and the normal derivative. 

It can be shown that the satisfaction of (2.X) is a necessary and 

sufficient condition that u and ZJ be the boundary values of some solu- 

tion of system (1.1) in theYXalf-plane under the condition (I - 0 for 

y= 0. 
XY 

From this it follows that (2.6) is a necessary and sufficient condi- 

tion that o(s, p) and v(s, p) are the transforms of the boundary values 

of some solutions of system (f.l), in the half-plane, under the condition 

o,:$=( 

0 on the boundary. Therefore, (2.6) may be used to construct a(s,p) 
v s, p un er certain conditions. ) d 

It should be pointed out that for 1x1 < 1 relation (2.8) represents an 
integral equation of the first kind for the determination of u (x, t) 
and the exposition to follow below represents the constructioi'of its 

solution using thereby the results of Fok [ 111. 

3. let us consider, as an auxiliary problem, the problem of a semi- 

infinite die. The initial conditions as before, shall be taken as vanish- 

ing, and on the boundary y = 0. 

u - 0, -w - 5 vu=o for x<o. u=f(s,t) for z>O (3.1) 

where f(~, t) is a bounded function with a finite number of lines of dis- 

continuity for x > 0, t > 0. 

Using (2.6), we construct the function avY(n, t) for n > 0, t > 0, 

possessing, with respect to x, singularitiecnot higher than l/x, bounded 

for x, and approaching infinity uniformly with respect to t, as well as 

the function v(x, t), for x < 0 and t >, 0 such that 

2)(x, tj = 0 for t+yz<O (3.2) 

and that it be integrable with respect to x in the usual sense, in an 

arbitrary finite interval for any t. 

The requirement (3.2) means that at the front of the wave, propagating 
from the die, the medium is at rest, which is in accordance with the 

vanishing initial conditions. 

If the function u for x < 0 satisfies (3.1), and for x > 0 possesses 

the properties enumeF;ted above, then ofs, pf, determined by (2.11, exists 

[lo], and will be a regular function of the complex variable s for Re 

s > 0 and will approach 0 as s approaches infinity. 
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In order to clarify the question of existence of V(s, p) from (2.2), 

it will be represented in the form 

where 

V,(s,p)=cp~-sxdz~v(z,r)e-p*dt. V,(s,p)= i 

03 

e-8Xdx \ v(x,t) e--pt dt 

0 0 -cn n 

From what was said above with regard to the properties of f(x, t) and 

from (3.1), it follows that V (s, p) will be regular for Re s > 0 and 

will approach 0 at infinity [ f 01, at least as s-l. From (3.2), in accord- 

ante with [lOI, it follows that Vz(s, p) will be regular for Re s < y 

Re p and will also approach 0 at infinity. 

‘Ihus the 

function VI 

problem. To 

ing 0, as s 

Res<yRe 

manner that 

determination of the functions o(s, p) and V,(s, p) (the 

is known from condition (3.1)) is reduced to the following 

find the function o(s, p), regular for Re s > 0 and approach- 

approaches infinity; and the function V2(s, p), regular for 

p, and also approaching 0 as s approaches infinity in such a 

with 

z 
_,-^ 
v Y’ - ‘I” 

T- c (q) CJ (s9 P) + Vl (s, P) = - va (ST P) (q = $) (3.4) 

Rep>& O<Res<rRep (3.5) 

Here Vl(s, p) is a known function, regular for Re s > 0 and becoming 

0 at infinity as s-l. 

This problem will be solved by the method advanced in paper [ll]. 

We represent the coefficient of o(s, p) from (3.4) in the form 

Here 

1 vy*- qs 1 

Pp C(q) = - 2p (1 - y2) p KI (C?) Kz (q) (3.6) 

w3) = :++,-$)9 e=p F-- gl WI, Ka (q) = 57 e=pt-g&7)1 (3.7) 

g1(!?)=+jY?(Q&9 &d(q) = - $(C) -A!_ 
t--9 

-1 Y 

'p(6) = arc tg 
4P I/@? - Y?) (1 - P) 

(273 - 1)s 

(3.8) 

(3.9) 

= 0. 

we conclude that 

thereby l/0 is the root of Rayleigh's equation C(l/g) 

Using the properties of Cauchy type integral [12], 
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Kl(q) is a regular function of the complex variable q outside the interval 

- l< q<-y, and 
is regular outside 

does not have there any zeros except at q = =,K2(q) 
the interval y < q < 1 and also does not possess there 

any zeros, except at q = 00. At infinity K, and K2 approach zero as qe112. 
'lhen Kl(s/p) is regular outside the interval connecting the points - yp 
and - p, and K2(s/p) is outside the interval [yp, pl and also does not 

possess any zeros at finite points of the plane outside of these intervals 

and becomes 0 at infinity as s -1'2. Using (3.6) we rewrite (3.4) in the 

following manner: 

(3.10) 

q=slp, O<Res<rRep 

The second term on the left-hand side of (3.10) is obviously regular 

within the strip 0 < Re s < y Re p and tends to 0 as s -1'2 when s 
approaches infinity. Therefore, using Guchy type integrals, we may re- 

present it in the form 

VI (s. P) 
___ = Ll (s, p) + La (s, P) 

Kz (q) 

Here the contours 2, and 2, are rectilinear, parallel to the imaginary 

axis, and are situated along the left and right edge of the strip 0 < - 
Fk s < y Re p, respectively. It is not difficult to note that L,(s, p) 
is regular for Re s > 0 and approaches 0 at infinity, while L,(s, p) is 
regular for Fk s < y Re p and also approaches 0 at infinity. 

We rewrite (3.10) in the following manner: 

c& (1. J_ y) p K,(4) o(s P) - Ll (s9 P) = L2 (sv P) + v9 (& p) gz (q) 
(3.12) 

As was indicated above, each term on the left and right-hand sides 

of (3.12) is regular at Re s > 0 and Re s < y Re p respectively, and 
approaches 0 at infinity. 'lhen, from the satisfaction of (3.12) on the 

strip (3.5) it follows that (3.12) is satisfied on the whole plane s and 
from this, taking into account the properties of the terms, on the basis 

of Liouvilles' theorem, we conclude-thk the left- and right-hand 
of (3.12) are identically equal to zero. Then 

0 (S, p) = 2p (1 - 7") P L;$$- ’ v, (s, p) = - Ii’, (q) Lz. (s, P) 

where q = s/p and K,, K,, L,, L, are given by formulas (3.7) and ( 

sides 

(3.13) 

3.11). 
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It is not difficult to verify that the functions u(s, p) and V2(s, p) 

so constructed satisfy the requirements of regularity and behavior at 

infinity formulated for them. lhe uniqueness of the solution of the 

problem studied in this section is easily proved, considering the 

corresponding homogeneous problem. 

In order to conclude the solution of the problem of the "semi-infinite 

diem, the functions o(s, p) and V2(s, p) should be subjected to inverse 

transformation and o (n, t) should be constructed for n > 0, and V(X, tl 

should be constructea'for x < 0. 

4. We shall consider first the most simple case when f(r, t) from (3.2) 

does not depend on n, that is, fk, t) = f(t). We have 

V1 (5, p) = y, F (p) = fr (t) e-p’dt 
0 

Formula (3.13) takes on the form: 

Performing inverse transforms we obtain 

%Y (2, t) = - $ f’(t) for t-yyz<O 

%lu (G t) = -$f’G) -k 
V/z(y-2-1) a *‘x(8-QA(t;) 

p at \ $_l/c;--y f(t--sE)dE (4.1) 

Y for t-yyz>O 

v(z,t) = 0 for t+yz<O 

-vx - 
v (2, t) = 

I 

h 1/2y (1 - yy s “~(S~~-+~” f (t + Es) 4 lfor t + YS > o (4.2) 
Y 

Here 

A(E) = exp kl(---EE)l, B(E) = exp k-.&E)1 

--1(E) = cos'~(E)exp kl(- E)l, 

for f>i f4.3J 

B(E) = cow(E)exp [- g2 (EN 
iorE< 1 

Here gl(- 5) and g2@ for 5 > 1 are given by forsmlas (3.8) and for 

y < [& 1 by the same formulas, where the integrals are taken in the sense 

of their principal value. #cl is given by formula (3.9). In (4.2) the 

integral is also taken in the sense of its principal value. A study of 

the physical consequences will be presented further below. 

5. Let us consider now the general case of the problem of the "semi- 
infinite diem. It is not difficult to verify that (3.13) may be trams- 

formed to the form 
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00 

0 (s, p) = - pp -0 v, (s, p) + 2P(1--Y2)P 1 p (5--4)c(s) 
VT”- q2 K1(q) n - y v/t;-Y (5-q) I Vl (EP, P> 4 

It is not difficult to notice that the first term in this formula is 

a double Laplace transform (one-sided with respect to t and two-sided 

with respect to x) of the value of o YY(x, t) for y = 0, corresponding 

the condition for y = 0 

to 

lT ry.=O, v=O forx<O, V=f(X,t) for 2>0 

These conditions lead us to the solved boundary value problem [71, 

which permits to construct the value of uYy, of interest to us, and which 

shall be designated by oYyO(n, t). Performing inverse transformations 

also of the second term, we obtain 

QVl/(~, t) = %JYO(~, t) for t-yx<O 

Performing inverse transformations of the function I'*(s, p) from 

(3.13) we obtain 

v(z,t) = 0 for t+yx<O 

In formulas (5.1) and (5.2) the following notation has been introduced 

Here Y 

-I= t--,-cE, F,(E)= J&f , F, (5,611 = I/L - E 
Y 

'lhe functions A([) and B(t) are given by formulas (4.3). It is not 

difficult to verify that the constructed functions D (n, t) and V(X, t) 
satisfy all the requirements which we imposed upon tlZn (see Section 3). 
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6. We shall show now how the values of uyy for 1x1 < 1 and ~J(I;, t) 

for 1 x\ > 1, may be constructed from conditrons (1.2) and using the-solu- 
tion of the problem of the "semi-infinite dien. 'Ihe line of thought is 

analogous to the one used in paper 191, We consider the plane (x, t)y= 0. 
b virtue of vanishing initial conditions in the regions S,, and S,, 11(x, 

t) = 0. 

the'~o~%~"o?~h?~r%~ 

we can construct the values of u(x, t) using 

em of a semi-infinite die, since in formula 

(5.2), transformed to the new system of coordinates, the integration will 

be carried out within the region P,, + P,, or P,, + P,,, i.e. there, where 

the values of Y(X, t) are given. 

In region PoOuYY (x, t) will be constructed by a well-known method, i.e. 

as the normal stress component, corresponding to CT 

vertical displacement [ 71. h regions P sad P 
Ifi % 

,“;: 
= 0 and to the given 

(x, t) is constructed 

with the aid of the solution of the pro em of t e nzzmi-infinite die", 

since in formula (5.1), transformed to the new system of coordinates, the 

integration will be carried out within the regions P,, + PI, or P,, + P,,, 
where the values V(X, t) are given. 'Ihe values of V(X, t) In regions 

S 21 + 32 and the values of u (x, t) in regions P,,, P,,, P,, are con- 

structed in the same manner asYYin regions S,,, 

respectively, 
SlZ andPgos p,I, pf2> 

since the integration must be carrred out in the regions 

lying within Pzl + P,, + P,, + P,, + P,, + S 
P 12 + pcJ* + %I + %, 8' 

+ S,, or Pz2 + Pro + PII 
where the values of Y x, t) will already be known. 

Continuing this process, it is obviously possible to construct the 

values of cI (x, t> for \ x1 < 1 and vk, t) for 1x1 > 1, which concludes 
the solutioiyof the problem. 

7. Let us investigate scme properties of the solution of the problem 

of the nsemi-infinite die-. We shall consider first the expression for 

the vertical displacement on the free part of the boundary x < 0, which 

is given by (4.2). 

hs we required, v.= 0 for t + yx < 0, which in accordance with the 
vanishing initial condition t + yx = 0 is the equation of the front of 

the longitudinal waves, propagating from the die. At the front 
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v =o, 8V av 
x=0, z=o 

It is not difficult to verify that V(X, t) is continuous at 

x = 0, however, dv/&x for x approaching 0, is not bounded from 

and may be represented for small values of x in the form 

the point 

the left 

Using [ 121, Section 29, we conclude that v(x, t) for t/x = - 8 possess- 

es a logarithmic singularity, i.e. there is a logarithmic discontinuity 

in the vertical displacement on the free part of the boundary, which is 

propagated with the speed of Rayleigh waves, (see Section 31, as could 

have been expected cx priori. Investigating expressions (4.2) and (4.31, 

the front of langitudinai waves t + x = 0 may also be separated, however, 

just as at the front of the longitudinal waves, v(x, t) and both of its 

first derivatives with respect to x and t, will be continuous. 

The most simple case occurs when f(t) = I, I > 0, then 

It is important to emphasize that in this case V(X, t) is a homogeneous 

function of order zero in the variables x and t, and this means that in 

this case the problem of the semi-infinite die could have solved by the 

method of functional invariant solutions of Smirnov and Sobolev [ 41. Let 
us study now the properties of D yY(x, t). From (4.l)we have 

QYY(% t) = - +), t---x<0 

i.e. at the points which were not reached as yet by the disturbance, "re- 

fleeted" from the free part of the boundary, the stress is the same which 

would be obtained if the condition u = 0, v = f(t) were prescri!)ed 

along the whole boundary, as could bexYexpected. 

At instant t = yx the front of the longitudinal wave reaches the point 

x; at thefronto = 0 if f(O) = 0 and tr -) w as a(.~)/~ t - yx if 

f(O) f 0; therebyYJ as x approaches infin!?y, a(x) approaches 0 as x-l. 

Studying (4.1) and (4.3) we also may separate the front of the pro- 

pagating transverse wave t - x = 0. Ikderneath the die (x > 01, precisely 

such conditions are obtained in this case, when the propagating longi- 

tudinal or transverse waves, in interaction with the boundary, produces 

only the longitudinal or the transverse wave respectively 173. ‘Ihus, for 
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t < x < t/y the stress u 

yI; 

from (4.1) is the stress in the longitudinal 

wave, and for 0 < x < t t e total stress in the longitudinal and trans- 

verse waves. 

At the points x = 0, just as in the solution in the corresponding 

static problem, there occurs an integrable singularity for small n, namely 

The investigation of the general case of the problem of the "semi- 

infinite diem shows that if ffn, tf = 0 from (3.2) for x = 0, then 

aJz, t) and &/a x will be continuous at the point x = 0, in the corres- 

ponding static case we have the same picture. 

It is important to emphasize that the problem of the die investigated 

in the present paper could be also solved by the method of functional- 

invariant solutions of 2mirnov and Sobolev in the following manner. 

Considering the problem of the nsemi-infinite diem we must put f(r, 
t> =lforr>qandt>r, where 7, r > 0 are arbitrary parameters and 

f = 0 for other values of x and t. ET (n, tl may be constructed by the 
functional-invariant method valid forYt - r < YJI. The obtained wave should 

be represented in the form of superposition of plane waves, and after 

this, one should study how each wave will interact with the free boundary, 

and the result should then again be added. 

I";lming up the values of a , corresponding to different values of 7 
and r, one can obtain the valiZ of u corresponding to sn arbitrary 

function fix, t). The passage from tiz'semi-infinite die to a finite die 
may be carried out in the ssnte manner as in the present paper. 

We take this opportunity to express our deep gratitude to N.V. Zvo- 

linskii, who expressed great interest in the present work. 
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